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Mécanique des fluides compressibles 

Exercice 5.6 
Une tuyère de de Laval (convergente-divergente) est conçue pour fonctionner isentropiquement 

avec un nombre de Mach de sortie égal à 1.5. La tuyère est fournie en air par un réservoir où la 
pression est égale à 500 kPa (constante) et la température à 400 K. Le col de la tuyère a une aire de 5 
cm2. On supposera que l’air se comporte comme un gaz calorifiquement parfait (avec 1.4 = ) et r = 

287 J/Kg.K. 
a. Déterminer le rapport de l’aire de sortie de la tuyère sur l’aire du col. 
b. Trouver la plage de pressions arrières qui génèreraient un blocage sonique. 
c. Trouver le débit massique pour une pression arrière de 450 kPa. 
d. Trouver le débit massique pour une pression arrière de 0 kPa. 

Exercice 5.7 
Portion de l’épreuve 2012 (a. à c.) 

Une des trois tuyères principales de la Navette Spatiale (Space Shuttle Main Engine – SSME) est 
alimentée par une chambre de combustion où réagissent l’oxygène et l’hydrogène pour former de la 
vapeur d’eau (de masse molaire égale à 18 g/mol et un rapport de chaleurs spécifiques égal à 1,3). La 
pression dans la chambre de combustion est de 20 MPa tandis que la température atteint 3'315 
degrés Celsius. La vapeur d’eau est détendue dans une tuyère de Laval de diamètre au col égal à 0,26 
m et de diamètre à la sortie égal à 2,29 m. 

 
a. Si la pression arrière est égale à 101'325 Pa (au décollage ou sur un banc d’essai à l’air libre), 

montrer qu’il y a blocage sonique. 
b. Si l’écoulement est isentropique tout le long de la tuyère, utiliser les relations adéquates pour 

vérifier que le nombre de Mach à la sortie de la tuyère est égal à 5.5322. Evaluer la pression, 
la température, et la vitesse des gaz à la sortie de la tuyère (en utilisant les équations, car les 
tables ne sont pas assez précises pour ce genre de nombre de Mach). 

c.  Evaluer le débit de sortie des gaz. 
d. Quelle serait la vitesse de sortie maximale atteignable (si, par exemple, la tuyère pouvait être 

agrandie indéfiniment) ? 
e. La poussée d’une tuyère peut s’exprimer de la manière suivante : 
 

Poussée = (Débit des gaz) * (Vitesse de sortie des gaz) + ( )sortie ambiante sortiep p A−   
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où le deuxième terme exprime la force due à la différence de pression entre la sortie de la 

tuyère et l’air ambiant. Le terme, ( )sortie ambiante sortiep p A−  , peut-être positif ou négatif selon 

la valeur de la pression de sortie par rapport à la pression ambiante. Il varie avec l’altitude de 
la fusée car la pression atmosphérique (pression ambiante) décroît avec l’altitude alors que 
la pression de sortie reste constante. Ce terme est en fait négligeable par rapport au premier, 
et pour cet exercice on prendra : 
 

Poussée = (Débit des gaz) * (Vitesse de sortie des gaz) 
 

Evaluer la poussée avec les valeurs obtenues en b. et c. 

Exercice 5.8 
Portion de l’épreuve 2013 

Un problème environnemental d’actualité est l’augmentation de la quantité de CO2 dans 

l’atmosphère. Ce gaz est issu des réactions de combustion de produits carbonés. Plusieurs solutions 

ont été envisagées pour récupérer ce gaz à la sortie des fourneaux et éviter sa libération dans 

l’atmosphère. 

Une solution vient d’être proposée et financée (à plusieurs millions de $$$ !) par ARPA - Advanced 

Research Project Agency, un organisme de financement aux USA, créateur dans les années ’60 de 

l’internet (appelé ARPAnet à ses débuts). Cette solution est la suivante. 

Des gaz issus de la combustion du charbon (contenant 16% CO2 en volume) sont comprimés à 2 bar 

et à une température de 300 K, et sont injectés dans une tuyère convergente-divergente (tuyère de 

Laval) jusqu’à atteindre un régime supersonique. Le CO2 passe alors de l’état gazeux à l’état solide 

(glace) : le flux passe ensuite dans une conduite de géométrie courbe, et par effets inertiels (force 

centrifuge), les crystaux de CO2 se séparent des autres gaz et peuvent être récoltés et stockés. 

 

 

Tuyère convergente-Divergente 

Solidification 

du CO2 et 

séparation 
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On suppose que le gaz (contenant du CO2 et d’autres gaz) a un rapport de chaleurs spécifiques 

constant et égal à 1,4 (une hypothèse osée) et une masse molaire de 35 g/mol. 

Rappel : si un gaz (parfait) à pression p contient x % en volume d’un certain gaz, ce dernier a une 

pression partielle égale à (x.p)/100. 

a. Expliquer qualitativement la raison du changement de phase du CO2. 

b. Sur le diagramme de phase du CO2 (ci-dessous), situer l’état initial (dans le « réservoir ») du 

gaz carbonique uniquement (attention : utiliser la pression partielle). 

c. Tracer sur ce diagramme (en évaluant quelques points) le chemin de l’évolution 

thermodynamique du CO2 dans la tuyère. En particulier, évaluer (approximativement, avec quelques 

itérations sur le diagramme) la température du gaz, la pression partielle du CO2, et le nombre de 

Mach de l’écoulement au moment de la solidification du gaz carbonique. 

d. Dimensionner la tuyère (taille du col et taille de la sortie de la tuyère) afin de faire passer 1 

kg/s de gaz (tous les gaz, pas seulement le CO2) et atteindre la solidification du CO2. 

 
 

Point triple 

5,19 bars, 216,6 K 

Solide 

Gaz 

Liquide 
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EXERCICES COMPLEMENTAIRES 
 

 

Exercice 5.9 
Ecoulement d’eau liquide 
 

Dans un exercice précédent, on a vu que l’équation d’état de l’eau (équation de Tait) est donnée 
par : 

 

où le paramètre B est une fonction de l’entropie, mais est généralement pris comme constant (égal à 

3'000 atm pour l’eau). L’exposant k est égal à 7.15 pour l’eau, tandis que 
0  est la masse volumique 

du liquide à des conditions ordinaires. Pour une pression de réservoir 
0p  , montrer que le nombre de 

Mach de l’eau dans une tuyère connectée au réservoir est donnée par : 

 

 

Trouver la pression de réservoir nécessaire pour générer un nombre de Mach égal à 1 en une section 

où la pression est égale à 1 atm. 

 

Exercice 5.10 
Propagation d’une onde de pression dans une conduite flexible (vaisseau sanguin) 
 
La vitesse de propagation d’une onde de pression dans un milieu fluide infini est donnée par la 
formule donnée en classe : 
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Dans une conduite infiniment rigide emplie de fluide, la vitesse d’une onde de pression est identique 
à celle dans un milieu infini. Par contre, l'élasticité de la conduite peut modifier grandement la 
vitesse de propagation d’une pulsation. Un exemple dramatique est fourni pas la vitesse de 
propagation d’une onde de pression dans un vaisseau sanguin (la pulsation est générée par chaque 
battement du cœur). La vitesse peut alors descendre jusqu’à quelques mètres par seconde (au lieu 
des 1'450 m/s dans un milieu liquide infini). 
 

a. Montrer que pour une conduite de section A, qui peut varier sous l’effet de la pression, les 
équations de conservation de masse et quantité de mouvement se résument à (pour un 
fluide non visqueux et un écoulement quasi-monodimensionnel) : 
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b. Faire l’hypothèse que les variations de masse volumique, d’aire, de pression, et de vitesse 

sont infinitésimales :  
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Réécrire les équations en négligeant les termes du second ordre et montrer : 
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c. Une variation infinitésimale de pression p’ est couplée à une variation infinitésimale de 

masse volumique '  par la relation : 
2' 'fp a =   

où af est la vitesse du son dans un milieu fluide infini. 

   
De plus, si la conduite a un module de Young E, un rayon R, et une épaisseur h, il est possible 
de montrer que la variation d’aire A’ pour une variation de pression p’ est donnée par : 
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Montrer alors que la variation de pression p’ obéit l’équation d’onde : 
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où la vitesse a de l’onde de pression est donnée par : 

 
2 2 2

1 1 1

f sa a a
= +   

où as est une vitesse d’onde caractéristique dans la conduite emplie de fluide. Donner 
l’expression de cette vitesse en fonction des propriétés de la conduite et du fluide. 
   

d. Montrer que pour une conduite infiniment rigide, l’onde de pression se propage comme dans 
un milieu infini. 
 

e. Montrer que pour une conduite extrêmement flexible, la vitesse de l’onde est 
essentiellement donnée par as.  

 
f. Donner des valeurs raisonnables (regarder sur le web) aux propriétés d’un vaisseau sanguin 

(une artère) et du sang, et estimer ainsi la vitesse de propagation de l’onde.  Cette vitesse est 
facilement mesurable en enregistrant le délai entre le battement du cœur et le ressenti du 
pouls au niveau du poignet. 
 

 


